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The instabilities o f  the Be lousov-Zhabo t insk i i  react ion were studied in an  isothermal  C S T R  by vary- 
ing the space velocity as b i furcat ion parameter .  The t ime-dependent  concent ra t ion  o f  b romide  ion and  
redox potent ia l  were observed, respectively, by a A g - A g B r  electrode and  a pla t inum-wire  electrode 
under  react ion-control l ing condit ions.  The single-peak periodic and  the chaotic  oscillations occur 
al ternately with increasing space velocity. The mul t ipeak  oscillations were also observed at  higher  
space velocities. Two kinds o f  chaotic  oscillations were observed, chaot ic  oscillations with ampl i tudes  
varying irregularly in the pe r iod ic -chao t ic  sequence region and  chaot ic  mixing of  large and  small 
ampl i tude  in the mul t ipeak  oscillations region. An  analysis o f  the phase portrai ts  for these chaotic  
oscillations indicates tha t  they correspond to low dimensional  and  fractal  structures.  

1. Introduction 

Much attention has been paid recently to chaotic and 
self-organized phenomena in nonlinear systems. The 
Belousov-Zhabotinskii reaction (abbreviated the 
B-Z  reaction) is known as one of such nonlinear 
chemical systems. In this reaction, malonic acid is 
oxidized by bromate ion in the presence of a metal 
catalyst in sulphuric acid solution. In an isothermal 
continuous stirred tank reactor (CSTR) the chemical 
species of this reaction oscillate in concentration. 
Schmitz et al. [1] and Hudson et al. [2, 3] observed 
various kinds of oscillations, including chaotic 
behaviours, at high feed flow rate. Turner et al. [4] 
and coworkers [5] investigated periodic-chaotic 
sequences at low flow rates, and they characterized 
time series data from the bromide-ion sensitive elec- 
trode record with power spectra and reconstructed 
attractors. The mechanistic source of chaos in this 
reaction, however, has not been elucidated because of 
the lack of reproduction of the various experiments: 
in particular at medium and high flow rates. Two 
reasons for the lack of reproduction are the strong non- 
linearity due to a complex elementary reaction sequence 
and unavoidable external perturbations. In fact 
Schmitz et al. [1] recognize that any experimental sys- 
tem cannot avoid those perturbations. It is, therefore, 
difficult to ascertain by experiment whether the system 
would be truly chaotic in the absence of perturbation. 

In the present work, an experiment was carried under 
isothermal, well-mixed condition with minimized exter- 
nal perturbations. The first purpose was to observe the 
transition of oscillation states in the wide range of the 
space velocity and to investigate a periodic-chaotic 
sequence. The second was to characterize chaotic be- 
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haviour and to ascertain whether the chaos appearing 
at medium and high space velocity is essential or not. 

2. Experimental details 

The four feeds were fed separately at an equal flow 
rate into a cylindrical glass vessel having a volume 
of 5.51 x 10 -5 m 3 by means of four syringe pumps 
which can feed constantly without pulsation (Fig. 
1). The mixed feed concentrations were the same 
as those employed by Hudson et al. [2, 3]: 
0.30kmolm -3 malonic acid, 0.14kmolm -3 sodium 
bromate, 0.20kmolm -3 sulphuric acid and 0.1x 
10-2kmolm -3 ammonium cerium(III)ni t rate .  A 
small quantity of sodium bromide (3.5 x 
10 -6 kmolm -3) was added to the solution of ammo- 
nium cerium(III) nitrate. The reactor was maintained 
at constant temperature (25 4-0.1 ° C). A Ag-AgBr 
electrode was used to measure the time-dependent 
concentration of bromide ion, and a platinium-wire 
electrode to measure the redox potential between 
Ce 3+ and Ce 4+. A Ag-AgCI electrode served as the 
reference electrode. The stirring rate was 2300 r.p.m. 
so as to guarantee the system under reaction-control- 
ling condition. 

3. Results and discussion 

3.1. Time series and their spectra 

In the range r = 2.78 x 10 -4 ,.o 2.97 x 10 -3 s -1, a 
remarkable sequence of different dynamical regions, 
so-called periodic-chaotic sequence, was observed: 
periodic and chaotic oscillations occurred alter- 
nately, each existing over some range in r. The first 
region, which is called Pl, has single-peak periodic 
relaxation oscillations with very small amplitude. 
The amplitude of the oscillations tends to become 
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Fig. 1. Experimental setup. (1) Cylindrical glass reactor, (2) magnetic pump, (3) syringe pump, (4) constant temperature water tank with 
thermostat, (5) stirrer, (6) Ag-AgBr electrode, (7) Pt-wire electrode, (8) Ag-AgC1 electrode immersed in saturated KCI solution, (9) satu- 
rated KNO3 ager bridge, (10) data recorder and (11) millivolt recorder. 

small with decreasing space velocity. This is due to the 
fact that  this region is very close to chemical  equili- 
br ium. The  second and the third per iodic  regions, 
called P2 and  P3 respectively, also have single-peak 
periodic re laxat ion oscillations. The  ampl i tudes  in 
P2 and P3 are, however ,  larger than  those in P1. The  
re laxat ion oscillations have a few distinct t ime scales 
in one cycle. In  these periodic regions, therefore,  
the spec t rum consisted of  a single fundamenta l  fie- 

quency and its ha rmonics  above  the ins t rumenta l  
noise level, which seemed to have a compl ica ted  struc- 
ture to some extent. Typical  examples  o f  a t ime trace 
and its spec t rum in these periodic regions are shown in 
Fig. 2(a). 

There  were two chaot ic  regions (C1, C2) in the 
sequence. Both  o f  the two chaotic  regions were char-  
acterized by irregularly varying ampli tudes.  The spec- 
t rum becomes m o r e  compl ica ted  than  that  for  
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Fig. 2. Experimental results for three space velocities: (a) region P2, r = 5.54 X 10 -4 S 1, (b) region C 2, r = 7.42 x 10 -4  s - l ,  (c) region M, 
r = 3.67 x 10 -3 s -1. For each r the graph shows the oscillogram the Pt-wire electrode potential and the corresponding power spectrum. 
The general characteristics of the Ag AgBr electrode output are essentially similar. 
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Fig. 3. The transition sequences given by experiment. The experi- 
mental data are shown by the circles. 

periodic regions, and broad band noise arises (Fig. 
2(b)). A similar sequence was observed by Turner 
et al. [3] and coworkers [4]. However, their periodic 
regions included multipeak oscillations which had in 
each period one large amplitude relaxation oscilla- 
tion and some small amplitude sinusoidal oscilla- 
tions. Therefore, the transition sequence that was 
observed in the present work is different from that 
reported by Turner et al. [3] and coworkers [4]. 

In the range r = 2.97 x 10 .3 ,-~ 4.43 x 10 .3 S -1, 
multipeak oscillations were observed, which included 
chaotic states mixed with two different types of 
multipeak oscillations. (Multipeak oscillations region 
M.) It will be convenient to refer to resulting wave- 
forms using the L ~ notation [6], where L is the num- 
ber of large-amplitude excursions and s is the 
number of small peaks in one cycle. The time trace 
and its power spectrum for the chaotic state mixed 
with 1 ° and 11 are shown in Fig. 2(c). These chaotic 
states were also characterized by broad band spec- 
tra, as Fig. 2(c) illustrates. From the point of  the 
waveform and the spectrum structure, this sequence 
of multipeak oscillations states may be similar to 
that observed by Hudson et al. [2, 3] in approximately 
the same range of space velocity as this work. This 
result indicates that the present work reproduced qua- 
litatively the experiment by Hudson et al. This 
sequence, however, could not be observed in detail 
in respect of the transition as Hudson et al. could 
do. This is because the syringe pumps were unable 
to change the feed rates slightly in the high flow 
rates. The sequence of regimes observed in the experi- 

ments is summarized in Fig. 3. Finally, at space 
velocity r > 4.43 x 10 .3 s -1 the reaction state 
reached a dynamic equilibrium with no oscillation. 

3.2. Characterization o f  chaotic behaviours 

The chaotic behaviours in this reaction were charac- 
terized by the phase space portraits constructed 
from the redox potential time series which were 
embedded into m-dimensional phase space as {E(t), 
E(t  + T), E(t  + 2T) , ' - ' ,  E(t  + (m -- 1)T)}, where m is 
the embedding dimension and T is a time delay [7, 8]. 
The time delay "r was arbitrarily fixed. Figure 4 shows 
two-dimensional chaotic phase portraits E ( t + ' r )  
against E(t)  and their Poincar6 sections given by the 
intersection of orbits of three-dimensional phase por- 
traits (where the third axis is E(t  + 2"r)) with the x = y 
plane. All Poincar6 sections of  these chaotic attractors 
seem to be nearly one-dimensional. These attractors, 
therefore, are almost two-dimensional in phase 
space. Judging from the structures of these attractors 
and Poincar6 sections, the behaviours in the chaotic 
regions C1 and C2 seem to be the same type as those 
observed by Turner et al. [3] and coworkers [4], while 
the chaotic behaviours in the region of  multipeak 
oscillations (M) seem to be the same type as those 
observed by Hudson et al. [3]. 

To quantify these chaotic attractors, the largest 
Lyapunov exponents of  those chaotic data were esti- 
mated with the reliable method developed by Wolf  
et al. [9]. The largest Lyapunov exponent "~max is 
plotted against space velocity in Fig. 5. The magni- 
tudes of/~max in the three periodic regions are approxi- 
mately zero (0.00 +0.01),  while those in the two 
chaotic regions are positive (more than 0.01). Wolf  
et al. [9] also estimated the chaotic data in this reac- 
tion system, and their estimation gave a result that 
/~max was  about 0.0054. In either case, A~x values 
are very small. These results, therefore, indicate 
weak and low dimensional chaos. 
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Fig. 4. Chaotic phase portraits and Poincar6 sections. (Every time delay 7- = 8 s.) 

(c) r = 3.67 x 10 -3 s -1 (M) 
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Fig. 5. The largest Lyapunov exponents against space velocity. 

In chaos of  dissipative dynamical systems, the 
volume of  phase space reduces with time and finally 
it becomes zero. The strange attractor is, therefore, 
stretched in the direction of positive Lyapunov 
exponents and folded repeatedly due to its nonlinear- 
ity. As a result, the strange attractor has a complicated 
and self-similar structure like a Cantor set, i.e. fractat 
structure. The fractal dimension is a very important 
measure which characterizes the geometric feature of  
strange attractor in dissipative dynamical systems. 
There are several kinds of  definition for the fractal 
dimension, and the correlation dimension proposed 
by Grassberger and Procaccia [10] was adopted. It is 
clear that the dimensions in chaotic regions are larger 
than those in periodic regions (Fig. 6). Moreover, the 
dimension is in a relatively good agreement with the 
corresponding largest Lyapunov exponent (compare 
with Fig. 5). The attractors of  singly periodic regions 
are a limit cycle, so the dimensions of  the attractors 
should be 1 within the precision of experiment. In 
this work, however, the dimensions of  singly periodic 
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Fig. 6. Correlation dimension against space velocity. 
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regions are larger than 1 (about 1.5). The experimen- 
tal data include some electrical noise and this noise 
causes an overestimation of the dimensions. 

As mentioned before, these chaotic attractors are 
almost two-dimensional in the phase space while the 
correlation dimensions are 2.5 ~ 3.5. Even if the 
influence of  noise is taken into consideration, the 
correlation dimensions are stilt larger than 2. This 
result indicates that these strange attractors have 
fractal structures, and low dimensional, i.e. these 
chaotic motions generated by a few degrees of free- 
dom. Hence, they correspond to deterministic chaos, 
not a stochastic behaviour which has a large number 
of  degrees of freedom arising from fluctuations in 
the environment. 

4. Concluding remarks 

The following may be deduced: 
(i) The single-peak periodic and the chaotic oscilla- 

tions occur alternately with increasing the space 
velocity. 

(ii) Two kinds of  chaotic oscillations appear: 
chaotic oscillations with amplitudes varying irregu- 
larly, and chaotic mixing of  large and small amplitudes. 

(iii) Judging from the phase space portraits and 
their Poincar6 sections, this chaotic behaviour is 
approximately two-dimensional. 

(iv) The largest Lyapunov exponent and the corre- 
lation dimension are in a good agreement with each 
other, and they characterized periodic and chaotic 
oscillations clearly. 

(v) The largest Lyapunov exponent and the correla- 
tion dimension indicate that the chaotic attractors are 
low dimensional and have fractal structures. 

(vi) These results provide definitive evidence for the 
existence of  deterministic chaos in this reaction at 
medium and high space velocity. 
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Appendix: The mathematical  theory o f  the phase space 
analysis 

A brief description of  the mathematical theory of  
phase analysis now follows. 



THE BELOUSOV-ZHABOTINSKII REACTION IN CSTR 651 

P1 

Z 

r J 

Fig. 7. Illustration of a Poincar6 section. 

A. 1 Poincard sections 

It is assumed that an evolution of a dynamical system 
is described by a set of autonomous ordinary differen- 
tial equations: 

d x( t )  = F(X(t)) (A. 1) 

Here X is a vector of variables and F is a vector field 
over this space. A system of differential equations 
such as Equation A.1 is called a flow in the phase 
space. It can be rather easily understood to observe 
the points of intersection of the trajectory with a 
plane than directly studying the solution to Equation 
A. 1 (Fig. 7). This plane is called the Poincard section 
after French mathematician Henri Poincar6. The 
plane can be suitably chosen to be easily analysed. 
The transformation leading from one point to the 
next is a continuous mapping called the Poincar6 map: 

Pn = T(Pn-1) = T2(pn-2) . . . . .  T"(Po) (A.2) 

If  the solution to Equation A. 1 is unique, the point P0 
determines P1, PI determines P2, and so on. The Poin- 
car6 section replaces the differential equations (A.1) 
with the difference equations (A.2). Equations A.2 
are not only easier to solve, but also reduce the num- 
ber of coordinates by one. 

A.2 The largest Lyapunov exponent 

In a dynamical system described by Equation A. 1, the 
evolution of a tangent vector 6 in a tangent space at 
X(t) is represented by linearizing Equation A. 1. 

d 6(t) OF (A.3) = 6 ( t )  

The solution of Equation A.3 be obtained as 

6(t) = A6(O) (A.4) 

where A is a linear operator which maps tangent vec- 
tor 6(0) to 6(t). Then the largest Lyapunov exponent 
which implies the exponentially fast diverging rate 
averaged over short time intervals of the tangent vec- 
tor 6 is defined as follows: 

1 N 116i(/xt)ll 
•max = l i m - - g " l n  (A.5) 

N~°~NAt i~_ 1 116/(0) 11 

The largest Lyapunov exponent Amax is zero for a limit 
cycle or a torus motion, although it is positive for 
chaos. 

A.3 The correlation dimension 

In a chaotic behaviour, there exists a spatial correla- 
tion of the positions of two points along the same tra- 
jectory that can be characterized through some 
function since all points are on the attractor. This 
function is called the correlation integral C(e) and 
defined as follows: 

C(e) = ~2 Z H ( e -  I I ) ~ i  - -  ~]l) (A.6) 
i#j 

Here N is the number of the sampled data points, H is 
the Heaviside unit step function, ~ is the radius of a 
hypersphere in the phase space. In a limited range of 
4, the following power law is satisfied: 

C(e) ~ e d (A.7) 

Then the correlation dimension d is defined as 

d - log C(e) 
log e (A.8) 


